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Large linear negative magnetoresistance(LNMR) was measured in a GaAs/AlxGa1−xAs two-dimensional
electron system with nonplanar topography, caused by random distribution of corrugations, generated by a
combination of prepatterning and regrowth processes. Even though the LNMR reaches up to 20% of the zero
field resistivityfrxxsB=0dg, in a very small region aroundB=0, the resistivity shows a nonanomalous behavior.
From comparison with a recent theory development for the conductivity of a classical two-dimensional Lorentz
gas, and numerical calculations of the electron dynamics in systems with random electrostatic potentials,
performed by us, we argue that the observed MR is mainly due to non-Markovian memory effects originated
by specific return processes in backscattering of electrons by corrugations and defects.
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I. INTRODUCTION

Recently the classical low-field magnetoresistance(MR)
in metals and semiconductors has been revised since it was
recognized that the conventional Boltzmann-Drude approach
fails to describe the electron dynamics in disordered
systems.1–4 Drude result yields zero change of magnetoresis-
tance, in the presence of short range electrostatic potential.
This constant resistance, in the presence of uniform magnetic
field, results from the exact compensation of the mean free
path decrease, in the presence of the Lorentz force, by the
Hall effect. In terms of the relaxation time approximation
magnetoresistance can be rewritten in the form:

DrxxsBd
rxxs0d

= vc
2skttr

2l − kttrl2d, s1d

where kttrl is the average transport time,vc=eB/mc is the
cyclotron frequency,m is the electron effective mass, and
rxxs0d is the resistivity at zero magnetic field. We may see
that whenkttr

2l=kttrl2, which is valid in the framework of the
time relaxation approximation, the longitudinal magnetore-
sistance is zero. For several specific cases, such as scattering
in the long range random magnetic potential(RMF), the
treatment beyond the relaxation time approximation is nec-
essary.

A new semiclassical approach of the electron dynamics in
random magnetic field, in the presence of the uniform per-
pendicular magnetic fieldB', has been developed in the
models cited in Refs. 5 and 6, where it was obtained negative
magnetoresistance of the type

DrxxsBd
rxxs0d

= − Cvc
2ttr

2 , s2d

where numerical factorC depends on the realistic RMF re-
alization. Such negative magnetoresitance has been studied

in experiments with nonplanar two-dimensional electron gas
(2DEG).7,8 Due to the presence of interfacial roughness,
electrons in such structures see an external uniform in-plane
magnetic fieldBi as a random perpendicular magnetic field
Brand

' .9 The presence of an additional small uniform perpen-
dicular field leads to the negative MR in accordance with
theoretical predictions.5,6

Another theoretical approach beyond the Boltzmann ap-
proximation is associated with so-called memory effects in
electronic transport. In the classical Boltzmann-Drude
model, all scatterers should be redistributed in a completely
stochastic way, after each collision, according to the
Stosszahlansatz. This means that no correlation exists be-
tween successive scattering events because an electron loses
its past memory after a few immediately preceding collisions
with other scatterers.1,4

However, in realistic systems scattering is not completely
stochastic because there is always a finite probability that
electrons may recollide with the same impurity, or that they
may not collide with any scatterer. These processes introduce
non-Markovian effects into the kinetic Boltzmann-Drude
model and produce significative corrections to the conductiv-
ity that should be taken into account. This has been demon-
strated, more clearly, in a two-dimensional(2D) model that
considers noninteracting electrons scattered by hard disks
(2D Lorentz model), in such a system magnetoresistance is
given by the formula1,10,11

rxxsBd
rxxs0d

= 1 − expS− 2p

vcttr
D . s3d

Equation (3), that includes both the contributions of
“circling” and “wandering” electrons, is valid in the limit
Nd2→0, whereN is the 2D concentration of the scattering
centers andd is the effective diameter of the disk. For finite
values ofNd2 the resistivity behaves as11
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DrxxsBd
rxxs0d

= 1 −
0.15

NRc
2 , s4d

whereRc=vF /vc is the cyclotron radius andvF is the Fermi
velocity. This equation predicts a negative parabolic magne-
toresistance at low magnetic fieldsvcttr !1d. The conductiv-
ity of the 2D Lorentz model has been corrected, further,
by a more realistic approximation, based on 2D electrons
scattered by hard disks, randomly distributed, on the back-
ground of a smooth random potential.12 In this more general
case the magnetoresistance has also a parabolic
B-dependence:

DrxxsBd
rxxs0d

. − svc/v0d2, s5d

where v0=21/4p1/2vFsd2l trlLd−1/4, lL=vFtL is the transport
mean free path due to the scattering by the smooth random
potential,l tr =1/s2Ndd.

Recently, another numerical approach predicted for the
2D Lorentz gas with hard scatterers a nonanalytic negative
magnetoresistance proportional touBu at the classical
level sb;vcttr !1d.13 The behavior of this anomalous
MR was attributed to non-Markovian memory effects result-
ing from specific backscattering processes, ignored by the
Boltzmann approach and that were not considered
previously. The leading contribution to this negative and
linear MR is attributed to low angle return events to a
scatterer(1) after a single collision process with another
scatterer(2). For vct!1, the anomalous MR is approxi-
mated by the expression:

DrxxsBd
rxxs0d

= − 0.04svc/Nd. s6d

The anomalous character of this MR was analyzed in Ref.
14 where a more complete theory was presented. According
to this work small anglef&b backscattering events, in
single recollision processes, contribute dominantly with a
quadraticB term to MR. This contribution is negative, and
changes at very low fieldsb<0.05a/ l to a linearB depen-
dence (in this expressiona is a measure of the effective
radius of the scatterers andl is the transport mean free path).
Equation(8) summarizes the asymptotic behavior of MR, for
a 2D Lorentz gas formed by hard scatterers, in a wider range
of magnetic fields, as presented in Ref. 14:

DrxxsBd
rxxs0d

= − b0fszd, s7d

wherez=b /b0, b0;a/ l, and

fszd = 50.32z2 for z& 0.05,

0.032sz− 0.04d for 0.05& z& 2,

0.39 − 1.3z−1/2 for z→ `.
6 s8d

A small linear negative decrease of magnetoresistance
was observed previously in lattices with arrays of randomly
distributed antidots,15 and for a long time, a reasonable the-
oretical explanation for this phenomenon has not arisen.

In this work we present the results of a study of the low-
field magnetoresistance in a two-dimensional electron gas
constrained to move in a nonplanar topography originated by
a random distribution of corrugations and defects that re-
sulted from combined processes of prepatterning of antidot
lattices and regrowth by molecular beam epitaxy(MBE). We
report the observation of a large negative decrease of MR
which is dominated by an anomalous linear character. From
comparison with recent theory developments for the conduc-
tivity of a classical 2D Lorentz gas13,14 and numerical simu-
lations performed by us, we argue that the observed LNMR
is mainly due to non-Markovian memory effects that result
from specific backscattering events.

II. EXPERIMENTAL RESULTS

A. Fabrication of samples

Samples for this work were fabricated by molecular beam
epitaxy overgrowth of GaAs/AlxGa1−xAs semiconductor
high electron mobility transistor(HEMT) structures over
semi-insulating GaAs substrates, oriented in the(100) direc-
tion. Samples were previously prepatterned with antidot lat-
tices with 0.6mm period and 0.2mm average lithographic
diameter. After regrowth, the samples with the patterned area
were processed into Hall bars, with the nonplanar surface
situated on one side, as shown in Fig. 1(a). The distance
between voltage probes was 100mm and the width of the
current channel is 50mm. We followed a preparation process
similar to that described in Ref. 9. In a different way than
samples presented in Refs. 9 and 16, the surface of the
present samples consists of a random array of sharped cor-

FIG. 1. (a) Scheme of the sample hall bar showing the location
of the corrugated region.(b) Atomic-force microscope image of a
small regions900 mm2d of the corrugated region of the sample.
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rugations with an admixture of “stripe-like” and “hill-like”
topologies. The average amplitude of the corrugations is
greater across the channel of the Hall bar than along it. Due
to the fact that the two-dimensional electron sheet is close to
the surface, carriers are constrained to move in this nonpla-
nar topography.

Figure 1(b) shows an image of a square 900mm2 region
of the sample surface, obtained with an atomic-force micro-
scope(AFM). It can be observed that the disordered stripes
are mainly oriented along the length of the channel of the
Hall bar. The average corrugation height of the ridgesh,
obtained from the AFM image, is about 650 Å.

B. Experimental magnetoresistance

A standard cryogenic superconducting magnetic system
was used for magnetotransport experiments, they were per-
formed at different temperatures near the temperature of the
liquid helium. We employed the lock-in technique for detec-
tion, with an ac current not greater than 1310−6 A. Mea-
surements were performed with the magnetic field oriented
perpendicular to the plane of the Hall bar in the positive and
negativez directions aroundB=0 and also to the currentI
direction. The electron mobility in the planar region of the
sample ism=3.53105 cm2/V s and in the corrugated region
is about m=2.13105 cm2/V s. The electron concentration
Ns is 5.531011 cm−2.

Figure 2(a) shows the experimental relative decrease of
magnetoresistance Drxx/rxxs0d=frxxsBd−rxxs0dg /rxxs0d
around the zero magnetic field value taken at the temperature
of 1.4 K. In a similar way as other two-dimensional systems
with a certain degree of disorder, characterized by short
range potentials, we observe a decrease of magnetoresis-
tance, which is rather large and reaches up to 30% of its zero
field value. At low field, in a very small region around
B=0sB& u0.02uTd, when the dimensionless parameter
b;vcttr &0.4, the longitudinal resistivity shows a parabolic
behavior. Shortly after, the negative magnetoresistance turns
to a completely linear dependence on the magnetic field be-
tween −0.2 and 0.02T and 0.02 and 0.2T. This linear be-
havior represents a decrease of up to 20% ofrxxsB=0d
s0.4&b&4.2d which is a very remarkable fact since up to
now a large phenomenon of this kind was not previously
observed. After this interval, forb.4, the magnetoresis-
tance turns parabolic again but this time with a positive char-
acter and finally, in a short interval, remains as a background
of the Shubnikov-de Haas oscillations.

Two-dimensional systems grown on prepatterned GaAs
substrates have been recently used to study the electron dy-
namics in nonhomogeneous magnetic fields.9,16 In these
works, the regrowth processes resulted in regular stripes with
a well defined periodicity along or across the Hall device
channel(contrary to the present samples characterized by a
shorter lattice period), and magnetotransport experiments
were mainly focused on the study of the electron dynamics
when the magnetic field is oriented parallel or tilted in rela-
tion to the sample substrate. In the samples of the present
work, the magnetic field is oriented strictly perpendicular to
the sample surface and also to the current direction. If we

consider a corrugated surface defined byfsx,y,zd=z
− fsx,yd=0, with a magnetic fieldBext=s0,0,Bd oriented per-
pendicularly to the substrate, the electron motion is only sen-
sitive to the normal component of the fieldBef f to the sample
surface. This normal component of the magnetic field is
given by the projection of the external uniform magnetic

field vector over the gradient vector¹W fsx,y,zd, this can be
expressed as

Bef fsx,y,zd =
BW ·¹W f

u¹W f u
, s9d

where¹W f =sdf /dx,df /dy,1d. Expression(9) can be rewritten
more explicitly as

Bef f =
B

Î1 +Sdf

dx
D2

+ S df

dy
D2

. s10d

According to this expressionBef f fluctuates in amplitude
along and across the sample surface without changing
sign. From the AFM data we obtain that the average distance
between adjacent hills or stripesd is about 50 000 Å
which is larger than the average height of the corrugations
sh=650 Åd. According to this,df /dx and df /dy can be ap-

FIG. 2. (a) Experimental relative decrease of magnetoresistance
taken at 1.4 K, for the sample with random corrugations.(b)
The negative magnetoresistance shows a parabolic behavior
in a very small region aroundB=0, where the classical parameter
bø0.4. (c) and (d) A large linear B dependence is observed
between u0.4uøbø u4.2u for negative and positive field values
aroundB=0.
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proximated byh/d!1, from this we assume that the ampli-
tude of the magnetic fluctuation is negligible and does not
contribute significatively to the scattering phenomena in our
samples.

Thus carrier scattering in our samples should be mainly
due to strong scatterers such as corrugations and defects
(remaining antidots) of a short-range nature, and a
long-range random potential due to ionized impurities. It
was shown that the interplay of these two kinds of potentials
conduces to a nonsaturating negative magnetoresistance
in a Lorentz gas composed of hard-core reflecting disks.3

However, this model does not account for the large linear
anomalous character of the NMR observed in our experi-
ments.

We used the recent theoretical results obtained by V. Che-
ianovet al.14 to analyze our experimental results. Figure 2(b)
shows the very low magnetic field region of the negative
magnetoresistance shown in part(a). The NMR shows an
analytical behavior whenb→0 sB& u0.02uTd, and this part
of the curve was fitted according to the first part of the ex-
pression(8), we extract the parametera/ l =5.3, wherel is of
the order of 2.5mm and the effective radius of the scatterer
yields a=13.2mm.

Figures 2(c) and 2(d) show a linear fit for the NMR
betweenu0.02uTøBø u0.2uT, this corresponds to the region
between 0.42øbø4.2, according to these fittings we obtain
Drxx/rxxs0d=frxxsBd−rxxs0dg /rxxs0d<−0.98B. By compari-
son with the second part of expression(8), and keeping
the factor 0.032, we obtain the valuel =3.7 mm. From the
fitting of the parabolic region we obtain the average value of
the a/ l ratio which is greater than one due to the greater
cross section of the corrugations in relation to the mean
free path. From comparison with Eq.(8) we find qualitative
agreement between our experimental results and the theoret-
ical model, which indicates that the main contribution to
the observed NMR is due to non-Markovian effects resulting
from low angle 1−2−1 single recollision processes in
backscattering of electrons by corrugations. However, a
certain difference between the theoretical model and our
experimental results is related to the order of magnitude
of the full variation ofDrxx/rxxs0d=frxxsBd−rxxs0dg /rxxs0d.
In the case of the Lorentz gas composed of hard scatterers,
with disk radiusa this variation is of the order ofb0. In
the case of our measurements the whole decrease of
MR reaches up to 30% the value ofrxxsB=0d. This phenom-
enon that may be closely related to a specific “corridor
effect” for corrugations, that should present greater cross
sections for electron scattering, demands further calculations
for the classical electron dynamics in these particular 2D
disordered systems.

Linear negative magnetoresistance, at very low magnetic
field, was first reported by Gusevet al.15 in measurements
in microscopic and mesoscopic antidot lattices with random
distribution of scatterers. In that work the anomalous
magnetoresistance showed a temperature independent char-
acter and its relative linear decrease reached a maximum
value of about 3%. At the time, a consistent theoretical
model was not available for a proper explanation of this
phenomena. In the samples of the present work we observed
a temperature dependence of the low field magnetoresis-

tance, this phenomenon manifests itself as a gradual increase
of the parabolic behavior, over the linear character, as
uBu grows. Figure 3 shows the magnetoresistance curves,
at low field aroundB=0, for different temperatures between
1.4 and 31 K. We observed that the negative parabolic
behavior aroundB=0 increases rapidly for temperatures
above 8.5 K, this means that the initial regionB& u0.02uT
for T=1.5 K extends up toB& u0.06uT for T=23 K and
B& u0.1uT for T=31 K. Due to a simultaneous increase of the
saturation value with the temperature, the linear region of
the negative magnetoresistance shrinks but the linear trend
remains in a small region at temperatures above 30 K
corresponding to a decrease of up to 10% of the zero field
resistivity.

III. NUMERICAL CALCULATIONS

For a proper description of the low field magnetoresis-
tance in our samples it is necessary to simulate numerically
the dynamics of two-dimensional electrons constrained
to move in a randomly shaped nonplanar topography in
the presence of a uniform perpendicular magnetic field.17

This task is under development and is not presented in
this work. Instead, as an alternative approach, we assume
that the electron motion, influenced by the uniform magnetic
field, in the nonplanar topology formed by the random
distribution of corrugations and defects, can be compared
with the simulation of a two-dimensional Lorentz gas
composed of electrons, under the influence of a perpendicu-
lar uniform magnetic field. The array of nonoverlapping
scatterers is characterized by Gaussian potentials, distributed
randomly, as shown schematically in Fig. 4. As we are
interested in the classical nature of transport in this system,
we used linear response theory for the calculation of
magnetoresistancerxx through a different numerical
approach.

In the next we consider the classical approximation for
the dynamics of an electron in an array of two-dimensional
random potentials and, in the presence of magnetic field

BW=s0,0,Bzd, perpendicular to the 2D plane. The Hamil-
tonian of a single electron confined to thex−y plane by a

FIG. 3. Negative magnetoresistance at low magnetic field, for
different temperatures between 1.4 and 31 K.
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potential Uwsx,yd, and an array of random scatterers
U2Dsx,yd, is found to be

H =
1

2m*
spW − eAW d2 + Uwsx,yd + U2Dsx,yd, s11d

where the potential vector is written as

AW=s−By/2 ,Bx/2 ,0d, and the random antidot potential of the
antidotsU2D is simulated by the expression

UADsx,yd = o
i=1

M

U0 expF− S x

Gx
DgG · expF− S y

Gy
DgG ,

s12d

whereM is the number of antidots,U0 is the maximum am-
plitude of the potential of each scatterer, the parametersGx
andGy account for the antidot diameter at the Fermi energy,
and g allows us to vary between soft and hard potential
profiles, for our calculations we employedg,2–6. Due to
computational limitations we introduce periodic conditions
by enclosing the Lorentz gas into a square box confined by
hard potential walls of the type:

Uw = Uxx
n + Uyy

m, s13d

whereUx andUy are the maximum amplitudes of the walls at
the borders andm and n are integers that account for the
steepness of the confining potential walls. We used dimen-
sionless variables in a similar way as those explained in Ref.
18. Four equations of motion are obtained and they were
numerically integrated to obtain the electron trajectories. Ac-
cording to classical linear response theory the conductivity
of the 2D electron gas is given by

si j =
Nse

2

EF
E

0

`

kyistdy jst = 0dlGe−t/tdt, s14d

whereNs is the electron concentration,EF is the Fermi en-
ergy, kvistdv js0dlG is the velocity-velocity correlation func-
tion double averaged over phase spaceG, and the indicesi
and j stand for thex andy direction, respectively. The pres-
ence of additional scattering by phonons or defects is in-
cluded through the electron mean scattering timet, where

the probability of an electron not suffering a collision within
the time intervalf0,tg is given bye−t/t.

From the numerical computation of the conductivity ten-
sorssxx andsxy, as a function of the perpendicular magnetic
field, we are able to determine the longitudinalrxx and trans-
verserxy resistivities through the expressions

rxx =
sxx

sxxsyy + sxysyx
, s15d

rxy =
sxy

sxxsyy + sxysyx
. s16d

In order to calculate conductivity, we generate an en-
semble of electron trajectories, inside a square region of side
al, whereal is the antidot lattice period, chosen to be equal to
unity. This region contains 400 scatterers, with Gaussian po-
tentials, placed according to a uniform distribution. The ratio
a/ l (wherea is the radius of the scatterer at the Fermi en-
ergy) was chosen to be 0.001, and the mean free path
l =sN2ad−1 was 6.3al. N is the two-dimensional concentration
of scatterers. For the integration process we generate 200
trajectories for each particular configuration of scatterers, af-
ter this a new configuration is established and the process is
repeated up to 10 times. Due to computational limitations the
very low field region of magnetoresistancebø1, where
b;vcttr, is not accessible in our simulations.

Figure 5 shows the numerical results for the relative mag-
netoresistance obtained through our simulation. We observed
a large linear negative decrease of MR between 1.0øbø6,
for bù6 the resistivity turns parabolic and positive reaching
a saturation forbù10. Greater values for the ratioa/ l were
not possible to obtain in our calculations due to the rapid
increase of the smoothness of the Gaussian potentials for
greater values of the parametersGx and Gy. In conclusion
these numerical calculations showed that the linear response
approach for the conductivity detected correlations that may
be attributed to memory effects from backscattering events
due to the large linear decrease of magnetoresistance for
1.0øbø6.

IV. SUMMARY

In summary, we have studied the low field magnetoresis-
tance of a two-dimensional system constrained to move in a
nonplanar topography composed of random corrugations and
defects, contrary to the prediction of the Boltzmann-Drude

FIG. 4. Scheme of an array of two-dimensional antidots, formed
by electrostatic Gaussian potentials distributed randomly.EF repre-

sents the Fermi energy andBW the magnetic field vector.

FIG. 5. Relative magnetoresistance for a two-dimensional Lor-
entz gas obtained by numerical integration.
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approach the MR of this disordered system shows a domi-
nant large linear negative decrease. The comparison of our
experimental curves with a recent theoretical model for the
MR of a 2D Lorentz gas with a random array of scatterers
indicates that the main corrections to the conductivity in our
samples are due to non-Markovian memory effects resulting
from specific recollision processes.
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