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Negative linear classical magnetoresistance in a corrugated two-dimensional electron gas
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Large linear negative magnetoresistafichlMR) was measured in a GaAs/&a _,As two-dimensional
electron system with nonplanar topography, caused by random distribution of corrugations, generated by a
combination of prepatterning and regrowth processes. Even though the LNMR reaches up to 20% of the zero
field resistivity[ p,(B=0)], in a very small region aroun8=0, the resistivity shows a nonanomalous behavior.
From comparison with a recent theory development for the conductivity of a classical two-dimensional Lorentz
gas, and numerical calculations of the electron dynamics in systems with random electrostatic potentials,
performed by us, we argue that the observed MR is mainly due to non-Markovian memory effects originated
by specific return processes in backscattering of electrons by corrugations and defects.
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[. INTRODUCTION in experiments with nonplanar two-dimensional electron gas
78 . ;
Recently the classical low-field magnetoresista(d&) (2DEG). Due to the presence of |nterfaC|aI_ roug_hness,
in metals and semiconductors has been revised since it w&ECIrONS in such structures see an external uniform in-plane
agnetic fieldB, as a random perpendicular magnetic field

recognized that the conventional Boltzmann-Drude approac;ﬂjL 9 The presence of an additional small uniform perpen-

fails to describe the electron dynamics in disordere dirgrl]ﬁar field leads to the negative MR in accordance with
systems:~4 Drude result yields zero change of magnetoresis- . T 9
theoretical predictiond

tance, in the presence of short range electrostatic potential. .
This constant resistance, in the presence of uniform magnetic Another theoretical approach beyond the Boltzmann ap-

field, results from the exact compensation of the mean fregrommatlon is associated with so-called memory effects in

path decrease, in the presence of the Lorentz force, by th%lectronlc transport. In the clas_su:_al BoI_tzmann-Drude
Hall effect. In terms of the relaxation time approximation model, all scatterers should be redistributed in a completely

magnetoresistance can be rewritten in the form: stochastic way, aft(_ar each collision, accordmg to the
Stosszahlansatz. This means that no correlation exists be-

Api(B) 5 2 > tween successive scattering events because an electron loses
Pu0) = 0 ({7) = (7)), @) its past memory after a few immediately preceding collisions
_ _ . with other scatterers?
where(r) is the average transport time.=eB/mc is the However, in realistic systems scattering is not completely

cyclotron frequencym is the electron effective mass, and stochastic because there is always a finite probability that
pxx(0) is the resistivity at zero magnetic field. We may seeelectrons may recollide with the same impurity, or that they
that wherX 75)=(,)?, which is valid in the framework of the may not collide with any scatterer. These processes introduce
time relaxation approximation, the longitudinal magnetore-non-Markovian effects into the kinetic Boltzmann-Drude
sistance is zero. For several specific cases, such as scatterimgdel and produce significative corrections to the conductiv-
in the long range random magnetic potentigMF), the ity that should be taken into account. This has been demon-
treatment beyond the relaxation time approximation is necstrated, more clearly, in a two-dimensioaD) model that
essary. considers noninteracting electrons scattered by hard disks

A new semiclassical approach of the electron dynamics irf2D Lorentz mode)l in such a system magnetoresistance is
random magnetic field, in the presence of the uniform pergiven by the formula%t

pendicular magnetic fiel,, has been developed in the (B) o
models cited in Refs. 5 and 6, where it was obtained negative Pd®) 1- ex;(—). (3)
magnetoresistance of the type Pxx(0) We Ty
ApuB) _ o 22 ) ‘Equation (3), that includes both the contributions  of
p(0) =7 LW Ty, 2 circling” and “wandering” electrons, is valid in the limit
XX

Nc?— 0, whereN is the 2D concentration of the scattering
where numerical facto€ depends on the realistic RMF re- centers andl is the effective diameter of the disk. For finite
alization. Such negative magnetoresitance has been studigdlues ofNd? the resistivity behaves Hs
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whereR.=vg/ w, is the cyclotron radius and is the Fermi
velocity. This equation predicts a negative parabolic magne-
toresistance at low magnetic fiela. 7, <1). The conductiv-

ity of the 2D Lorentz model has been corrected, further,
by a more realistic approximation, based on 2D electrons
scattered by hard disks, randomly distributed, on the back-
ground of a smooth random potentlélln this more general
case the magnetoresistance has also a parabolic
B-dependence:

Ap(B)
Pxx(0)

where wy=2Y47Y2(d?l,1)™4, | =ve7, is the transport
mean free path due to the scattering by the smooth random
potential,l,, =1/(2Nd).

Recently, another numerical approach predicted for the
2D Lorentz gas with hard scatterers a nonanalytic negative
magnetoresistance proportional tB| at the classical
level (8= w.7,<1).'® The behavior of this anomalous
MR was attributed to non-Markovian memory effects result-
ing from specific backscattering processes, ignored by th(g

=~ (odwp)?, 5

FIG. 1. (a) Scheme of the sample hall bar showing the location
f the corrugated regiorib) Atomic-force microscope image of a

Boltzmann approach and that were not considere mall region(900 um?) of the corrugated region of the sample.

previously. The leading contribution to this negative and
linear MR is attributed to low angle return events to a
scatterer(1) after a single collision process with another
scatterer(2). For w.7<<1, the anomalous MR is approxi-

mated by the expression:

In this work we present the results of a study of the low-
field magnetoresistance in a two-dimensional electron gas
constrained to move in a nonplanar topography originated by
a random distribution of corrugations and defects that re-
Apy(B) sulted from combined processes of prepatterning of antidot
) =-0.04w/N). (6) lattices and regrowth by molecular beam epitadBE). We

X report the observation of a large negative decrease of MR

The anomalous character of this MR was analyzed in Refwhich is dominated by an anomalous linear character. From
14 where a more complete theory was presented. Accordingomparison with recent theory developments for the conduc-
to this work small angle¢<p backscattering events, in tivity of a classical 2D Lorentz g&**and numerical simu-
single recollision processes, contribute dominantly with aations performed by us, we argue that the observed LNMR
guadraticB term to MR. This contribution is negative, and is mainly due to non-Markovian memory effects that result
changes at very low field8~0.0%/l to a linearB depen-  from specific backscattering events.
dence(in this expressiora is a measure of the effective
radius of the scatterers ahds the transport mean free path
Equation(8) summarizes the asymptotic behavior of MR, for IIl. EXPERIMENTAL RESULTS
a 2D Lorentz gas formed by hard scatterers, in a wider range A. Fabrication of samples

of magnetic fields, as presented in Ref. 14: . _
Samples for this work were fabricated by molecular beam

Apy(B) epitaxy overgrowth of GaAs/AGa_As semiconductor
m“ﬁof(z)' @) high electron mobility transistotHEMT) structures over
XX semi-insulating GaAs substrates, oriented in tt@0) direc-
wherez=/,, Bo=all, and tion. Samples were previously prepatterned with antidot lat-
tices with 0.6um period and 0.2um average lithographic
0.327 for 2= 0.05, diameter. After regrowth, the samples with the patterned area
f(z) =10.032z-0.04 for 0.05< z=< 2, (8) were processed into Hall bars, with the nonplanar surface

-7 situated on one side, as shown in Figa)l The distance
0.39 - 1.3 for z—ce. between voltage probes was 1pfh and the width of the

A small linear negative decrease of magnetoresistanceurrent channel is 5&m. We followed a preparation process
was observed previously in lattices with arrays of randomlysimilar to that described in Ref. 9. In a different way than
distributed antidot$® and for a long time, a reasonable the- samples presented in Refs. 9 and 16, the surface of the
oretical explanation for this phenomenon has not arisen. present samples consists of a random array of sharped cor-
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rugations with an admixture of “stripe-like” and “hill-like”
topologies. The average amplitude of the corrugations is
greater across the channel of the Hall bar than along it. Due
to the fact that the two-dimensional electron sheet is close to
the surface, carriers are constrained to move in this nonpla-
nar topography.

Figure 1b) shows an image of a square 92f? region
of the sample surface, obtained with an atomic-force micro-
scope(AFM). It can be observed that the disordered stripes
are mainly oriented along the length of the channel of the
Hall bar. The average corrugation height of the riddes
obtained from the AFM image, is about 650 A.

PR = 01, 04
Parabolic

=0)
e

&
b

Ap.(B)/ p.(B

T=14K

s
w

0.2 0.0 02 04
Magnetic Field (T)

&)
S

i
]

B=0) o

Low field region 't
-1/a0.33(u B)
V2=0.19

A standard cryogenic superconducting magnetic system %" Magnetic field (T)
was used for magnetotransport experiments, they were per- 000 e cperimental e —o—experimental

formed at different temperatures near the temperature of the T ROOTR g [ dedhOm 0o
liquid helium. We employed the lock-in technique for detec- _
tion, with an ac current not greater thark 10 A. Mea- by
surements were performed with the magnetic field oriented %':
perpendicular to the plane of the Hall bar in the positive and &

Ap, /p,

B. Experimental magnetoresistance

e
2

negativez directions around3=0 and also to the current ,

direction. The electron mobility in the planar region of the mﬂ T 0% 0% oo 0 }

sample isu=3.5x 10° cn?/V s and in the corrugated region MagneticField(T) ~ Magnetic Field (T)

is about x=2.1X10° cn?/V s. The electron concentration

N is 5.5x 10 cm 2, FIG. 2. (a) Experimental relative decrease of magnetoresistance
Figure Za) shows the experimental relative decrease ofi@ken at 1.4 K, for the sample with random corrugatiotts.

magnetoresistance  Ap./ pd0) =[P B) = pu(0)1/ pys(0) The negative magnetore5|stance shows a pa_rabollc behavior

around the zero magnetic field value taken at the temperatuf® & Very small region arounB=0, where the classical parameter

of 1.4 K. In a similar way as other two-dimensional system <0.4. (¢) and (d) A large I'ne‘"’.‘r B depende.n.ce 1S observed

with a certain degree of disorder, characterized by shor emeg;'_%‘qgﬁ =[4.2 for negative and positive field values

range potentials, we observe a decrease of magnetoressr—0 unaE=2.

tance, which is rather large and reaches up to 30% of its zero | ,

field value. At low field, in a very small region around consider a corrugated surface defined Ibjx,y,2)=z

B=0(B=<|0.02T), when the dimensionless parameter~f(x,y)=0, with a magnetic field,,=(0,0,B) oriented per-

B= w.m, =< 0.4, the longitudinal resistivity shows a parabolic p_e_nd|cularly to the substrate, the electr_on motion is only sen-

behavior. Shortly after, the negative magnetoresistance turrigtive to the normal component of the fietid;; to the sample

to a completely linear dependence on the magnetic field besurface. This normal component of the magnetic field is

tween —0.2 and 0.0F and 0.02 and 0.7. This linear be- 9iven by the projection of the external uniform magnetic

havior represents a decrease of up to 20%pgfB=0) field vector over the gradient vectdtf(x,y,z), this can be

(0.4= B=4.2) which is a very remarkable fact since up to expressed as

now a large phenomenon of this kind was not previously I

observed. After this interval, foB>4, the magnetoresis- Bu(x.y.2) = B-Vf )

tance turns parabolic again but this time with a positive char- eff XY, |§f| '

acter and finally, in a short interval, remains as a background

of the Shubnikov-de Haas oscillations. whereVf=(df/dx,df/dy, 1). Expressior(9) can be rewritten
Two-dimensional systems grown on prepatterned GaAgnore explicitly as

substrates have been recently used to study the electron dy-

namics in nonhomogeneous magnetic fiél#s.In these B = B (10)
works, the regrowth processes resulted in regular stripes with eff df\2 [df\2’
a well defined periodicity along or across the Hall device 1 dx a/

channel(contrary to the present samples characterized by a
shorter lattice period and magnetotransport experiments  According to this expressioB,;; fluctuates in amplitude
were mainly focused on the study of the electron dynamicalong and across the sample surface without changing
when the magnetic field is oriented parallel or tilted in rela-sign. From the AFM data we obtain that the average distance
tion to the sample substrate. In the samples of the presebetween adjacent hills or striped is about 50 000 A
work, the magnetic field is oriented strictly perpendicular towhich is larger than the average height of the corrugations
the sample surface and also to the current direction. If wgh=650 A). According to thisdf/dx anddf/dy can be ap-
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proximated byh/d<1, from this we assume that the ampli- 0.9

tude of the magnetic fluctuation is negligible and does not /
contribute significatively to the scattering phenomena in our / P4 x
samples. 7 v,
Thus carrier scattering in our samples should be mainly = i-";' ’~._'
due to strong scatterers such as corrugations and defects g-o.l i \
(remaining antidots of a short-range nature, and a G ,.-",/ \Y
long-range random potential due to ionized impurities. It &u I \
was shown that the interplay of these two kinds of potentials & A T=310k AN
conduces to a nonsaturating negative magnetoresistance A e T=230K Y\
in a Lorentz gas composed of hard-core reflecting disks. o IZBE
However, this model does not account for the large linear 02p/  ----T=14K )
anomalous character of the NMR observed in our experi- 02 -01 00 01 02
ments. Magnetic Field (T)
We used the recent theoretical results obtained by V. Che-
ianovet al1* to analyze our experimental results. Figu(b)2 FIG. 3. Negative magnetoresistance at low magnetic field, for

shows the very low magnetic field region of the negativedifferent temperatures between 1.4 and 31 K.
magnetoresistance shown in p&). The NMR shows an
analytical behavior whe— 0 (B=<[0.02T), and this part tance, this phenomenon manifests itself as a gradual increase
of the curve was fitted according to the first part of the ex-of the parabolic behavior, over the linear character, as
pression(8), we extract the parametey|=5.3, wherd is of  |B| grows. Figure 3 shows the magnetoresistance curves,
the order of 2.xm and the effective radius of the scatterer gt |ow field aroundB=0, for different temperatures between
yieldsa=13.2 um. _ _ 1.4 and 31 K. We observed that the negative parabolic
Figures 2c) and 2d) show a linear fit for the NMR  pehavior aroundB=0 increases rapidly for temperatures
between|0.03T<B<=|0.2T, this corresponds to the region ahove 8.5 K, this means that the initial regins|0.04T
between 0.4% =<4.2, according to these fittings we obtain foy T=1.5 K extends up tB=<|0.06T for T=23 K and
Apyd piod 0) =[pxx(B) = pxx(0)]/ px(0) = =0.98B. By compari-  B<|0.1|T for T=31 K. Due to a simultaneous increase of the
son with the second part of expressio8), and keeping saturation value with the temperature, the linear region of
the factor 0.032, we obtain the valle3.7 um. From the  the negative magnetoresistance shrinks but the linear trend
fitting of the parabolic region we obtain the average value ofemains in a small region at temperatures above 30 K

the a/l ratio which is greater than one due to the greatercorresponding to a decrease of up to 10% of the zero field
cross section of the corrugations in relation to the meanesistivity.

free path. From comparison with E) we find qualitative
agreement between our experimental results and the theoret-
ical model, which indicates that the main contribution to II. NUMERICAL CALCULATIONS
the observed NMR is due to non-Markovian effects resulting
from low angle 1-2-1 single recollision processes in  For a proper description of the low field magnetoresis-
backscattering of electrons by corrugations. However, dance in our samples it is necessary to simulate numerically
certain difference between the theoretical model and outhe dynamics of two-dimensional electrons constrained
experimental results is related to the order of magnituddo move in a randomly shaped nonplanar topography in
of the full variation ofAp,y/ px0) =[pux(B) = Pux(0) 1/ pil0). the_ presence of a uniform perpend|cul_ar magnetic ﬁéld._
In the case of the Lorentz gas composed of hard scatterer§his task is under development and is not presented in
with disk radiusa this variation is of the order of,. In  this work. Instead, as an alternative approach, we assume
the case of our measurements the whole decrease #iat the electron motion, influenced by the uniform magnetic
MR reaches up to 30% the value @f(B=0). This phenom- figld,. in. the nonplanar topology formed by the random
enon that may be closely related to a specific “corridordiStribution of corrugations and defects, can be compared
effect” for corrugations, that should present greater cros¥ith the simulation of a two-dimensional Lorentz gas
sections for electron scattering, demands further calculation€omMpPosed of electrons, under the influence of a perpendicu-
for the classical electron dynamics in these particular 202" uniform magnetic field. The array of nonoverlapping
disordered systems. scatterers is characterized by Qaussan pptentlals, distributed
Linear negative magnetoresistance, at very low magnetif2ndomly, as shown schematically in Fig. 4. As we are
field, was first reported by Guseat all® in measurements interested in the classical nature of transport in this system,
in microscopic and mesoscopic antidot lattices with randonyV€ Used linear response theory for the calculation of
distribution of scatterers. In that work the anomalous™agnetoresistancepy, through a different numerical
magnetoresistance showed a temperature independent ch@RProach. _ , o
acter and its relative linear decrease reached a maximum N the next we consider the classical approximation for
value of about 3%. At the time, a consistent theoreticaf® dynamics of an electron in an array of two-dimensional
model was not available for a proper explanation of thisfandom potentials and, in the presence of magnetic field
phenomena. In the samples of the present work we observed(0,0,B,), perpendicular to the 2D plane. The Hamil-
a temperature dependence of the low field magnetoresigonian of a single electron confined to tkey plane by a
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'h a/1~0.001
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f FIG. 5. Relative magnetoresistance for a two-dimensional Lor-
entz gas obtained by numerical integration.

Ap, /p.(B=0)
&
N

ﬁ=mctll

i ) ) the probability of an electron not suffering a collision within
FIG. 4. Scheme of an array of two-dimensional antidots, formedthe time interval0,t] is given bye—tlf_

by electrostatic Gaussian potentials distributed randoBfyrepre-

_ " o From the numerical computation of the conductivity ten-
sents the Fermi energy amlthe magnetic field vector.

sorsoy, andaoy,, as a function of the perpendicular magnetic
field, we are able to determine the longitudipg] and trans-
potential U,(x,y), and an array of random scatterers versep,, resistivities through the expressions

U,p(X,Y), is found to be
Oxx

. poc= ——— 25—, (15)
H= o2 (-eA?+Uy(xy) +Up(xy), (1D TxTyy ™ Ty Tyx
where the potential vector is  written as py= —— (16)
A=(-By/2,Bx/2,0), and the random antidot potential of the Ty * TxyTyx
antidotsU, is simulated by the expression In order to calculate conductivity, we generate an en-
M semble of electron trajectories, inside a square region of side
Uas(xy) = S Ug expl - x\7 Cext - ¥\ a;, whereg, is the antidot lattice period, chosen to be equal to
ApX%Y) = =70 T, r,) | unity. This region contains 400 scatterers, with Gaussian po-

tentials, placed according to a uniform distribution. The ratio

(12) al/l (wherea is the radius of the scatterer at the Fermi en-
whereM is the number of antidots), is the maximum am- €9 was chosen to be 0.001, and the mean free path
plitude of the potential of each scatterer, the paramdters |=(N22)™" was 6.2. N is the two-dimensional concentration
andT’, account for the antidot diameter at the Fermi energy©f Scattérers. For the integration process we generate 200
and y allows us to vary between soft and hard potentialtrajectories for each part!culgr conflg_uratlon of scatterers, af.-
profiles, for our calculations we employad-2-6. Due to  t€r this a new confl_guratlon is establlsheq and th process is
computational limitations we introduce periodic conditionseépeated up to 10 times. Due to computational limitations the
by enclosing the Lorentz gas into a square box confined byery low field region of magnetoresistange<1, where

Figure 5 shows the numerical results for the relative mag-
Uy =Ux"+Uy™, (13)  netoresistance obtained through our simulation. We observed

. . a large linear negative decrease of MR between<l36<6,
whereU, andU, are the maximum amplitudes of the walis at for B=6 the resistivity turns parabolic and positive reaching

the borders andn and.n'are mteggrs that account for .the a saturation fo3=10. Greater values for the rat&/| were
steepness of the confining potential walls. We used dimen-

sionless variables in a similar way as those explained in Re{'ot possible to obtain in our calculations QUe to the_rapld
18. Four equations of motion are obtained and they Wer|'ncrease of the smoothness of the Gaussian poten.tlals for
numerically integrated to obtain the electron trajectories. Acs reater valugs of the pqrametd?§ andTy. In cpnclusmn
cording to classical linear response theory the conductivit;}hese numerical calculatu_)n_s showed that the I|_near response
of the 2D electron gas is given by approa_ch for the conductivity detected correlat|0n_s that may
be attributed to memory effects from backscattering events

N [ due to the large linear decrease of magnetoresistance for
5 J (u(Hy(t=0)re " dt, (14  1.0=p<6.
F J0

O'ij =

whereNs is the electron concentratioky is the Fermi en-
ergy, (vi(t)vj(0))r is the velocity-velocity correlation func-
tion double averaged over phase spéi¢eand the indice$ In summary, we have studied the low field magnetoresis-
andj stand for thex andy direction, respectively. The pres- tance of a two-dimensional system constrained to move in a
ence of additional scattering by phonons or defects is innonplanar topography composed of random corrugations and
cluded through the electron mean scattering timevhere  defects, contrary to the prediction of the Boltzmann-Drude

IV. SUMMARY
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